▲ Figure 20.20 Working with stem cells. Animal stem cells, which can be isolated from early embryos or adult tissues and grown in culture, are self-perpetuating, relatively undifferentiated cells. Embryonic stem cells are easier to grow than adult stem cells and can theoretically give rise to all types of cells in an organism. The range of cell types that can arise from adult stem cells is not yet fully understood. into a wide variety of specialized cells (Figure 20.20), including even eggs and sperm. The adult body also has stem cells, which serve to replace nonreproducing specialized cells as needed. In contrast to ES cells, *adult stem cells* are not able to give rise to all cell types in the organism, though they can generate multiple types. For example, one of the several types of stem cells in bone marrow can generate all the different kinds of blood cells (see Figure 20.20), and another can differentiate into bone, cartilage, fat, muscle, and the linings of blood vessels. To the surprise of many, the adult brain has been found to contain stem cells that continue to produce certain kinds of nerve cells there. Researchers have also reported finding stem cells in skin, hair, eyes, and dental pulp. Although adult animals have only tiny numbers of stem cells, scientists are learning to identify and isolate these cells from various tissues and, in some cases, to grow them in culture. With the right culture conditions (for instance, the addition of specific growth factors), cultured stem cells from adult animals have been made to differentiate into multiple types of specialized cells, although none are as versatile as ES cells. Research with embryonic or adult stem cells is a source of valuable data about differentiation and has enormous potential for medical applications. The ultimate aim is to supply cells for the repair of damaged or diseased organs: for example, insulin-producing pancreatic cells for people with type 1 diabetes or certain kinds of brain cells for people with Parkinson's disease or Huntington's disease. Adult stem cells from bone marrow have long been used as a source of immune system cells in patients whose own immune systems are nonfunctional because of genetic disorders or radiation treatments for cancer. The developmental potential of adult stem cells is limited to certain tissues. ES cells hold more promise than adult stem cells for most medical applications because ES cells are **pluripotent**, capable of differentiating into many different cell types. The only way to obtain ES cells thus far, however, has been to harvest them from human embryos, which raises ethical and political issues. ES cells are currently obtained from embryos donated by patients undergoing infertility treatments or from long-term cell cultures originally established with cells isolated from donated embryos. If scientists were able to clone human embryos to the blastocyst stage, they might be able to use such clones as the source of ES cells in the future. Furthermore, with a donor nucleus from a person with a particular disease, they might be able to produce ES cells that match the patient and are thus not rejected by his or her immune system when used for treatment. When the main aim of cloning is to produce ES cells to treat disease, the process is called *therapeutic cloning*. Although most people believe that reproductive cloning of humans is unethical, opinions vary about the morality of therapeutic cloning. ## Induced Pluripotent Stem (iPS) Cells Resolving the debate now seems less urgent because researchers have learned to turn back the clock in fully differentiated cells, reprogramming them to act like ES cells. The accomplishment of this feat, which posed formidable obstacles, was announced in 2007, first by labs using mouse skin cells and then by additional groups using cells from human skin and other organs or tissues. In all these cases, researchers transformed the differentiated cells into a type of ES cell by using a retrovirus to introduce extra, cloned copies of four "stem cell" master regulatory genes. The "deprogrammed" cells are known as *induced pluripotent stem* (*iPS*) cells because, in using this fairly simple laboratory technique to return them to their undifferentiated state, pluripotency